Subject Code: 24BP11RC01

Reg No:

GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS) (Affiliated to Andhra University, Visakhapatnam) B.Tech. - I Semester Regular Examinations, December / January – 2025 **ENGINEERING PHYSICS** (Common to CSE [AI&ML], ECE) 1. All questions carry equal marks 2. Must answer all parts of the question at one place

Time: 3Hrs. Max Marks: 70

UNIT-I

1.	a. Derive conditions for path difference for interference in thin parallel film due to reflected	
	light and obtain the conditions for maxima and minima.	[8M]
	b. Assuming the expression for intensity due to Fraunhofer single slit, obtain the conditions	for
	maxima and minima on the screen.	[6M]
	OR	
2.	a. Explain various methods of production of plane polarized light from unpolarized light.	[7M]
	b. Discuss the construction and working of Nicol's prism.	[7M]

UNIT-II

3.	a. Explain first law of thermodynamics. Obatin an expression for work done in adiabatic process.	[7M]
	b. State and prove Carnot's theorem.	[7M]
	OR	
4.	a. Derive an expression for efficiency of Carnot's heat engine.	[10M]

b. Explain Entropy in terms of second law of thermodynamics. [4M]

UNIT-III

5.	a. State and prove Gauss theorem in Electrostatics. Determine the electric filed due to a line charge distribution	[10M]				
	h. Evaluine Ears dervis low of Electrome an etic in duction					
	b. Explain Faraday's law of Electromagnetic induction.	[4]/1]				
	OR					
6.	a. Derive wave equation for Electromagnetic wave using Maxwell's Equations.	[7M]				
	b. Obtain an expression for magnetic field due to a long straight wire using Biot-Savart's	s law. [7M]				
UNIT-IV						
7.	a. Distinguish between spontaneous and stimulated processes.	[4M]				
	b. Discuss construction and working of He-Ne Laser system.	[10M]				
	OR					
8.	a. Explain the principle of propagation of light through optical fiber.	[6M]				
	b. Derive an expression for acceptance angle and numerical aperture in optical fiber.	[8M]				
	<u>UNIT-V</u>					

9.	a. What are matter waves? Derive an expression for de-Broglie matter wavelength.	[6M]
	b. Derive Schrödinger time-independent wave equation for a free particle.	[8M]
	OR	
10	a What is meant by Quantum Entanglement? Differentiate between Q-bits and Classical bits	[7M]

10. a. What is meant by Quantum Entanglement? Differentiate between Q-bits and Classical bits. [7M] b. What are Pauli spin matrices, and how are they used in quantum computing? [7M]

0